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Diastereoselective Reactions of Pyruvates with But-2-enyl Organometallic

Compounds.

Stereocontrol at the Tertiary Carbon Centre

Yoshinori Yamamoto,* Toshiaki Komatsu, and Kazuhiro Maruyama
Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

The reaction of pyruvates (3) with but-2-enyl-9-borabicyclo[3.3.1]Jnonane (2a) or its «-silyl and «-stannyl
substituted derivatives (10) produced the threo-isomer [(4) or (11), respectively] stereoselectively; the latter
reaction was applied to the synthesis of c/s-crobarbatic acid (14).

Diastereocontrol between two adjacent substituc:ts in the
acyclic system (1) is a problem of pressing concern in organic
synthesis.? Such stereocontrol between X = C=and Y = O-
(Z = H) is achieved by various methods.! Recently we repor-
ted stereocontrol between X = heteroatom, e.g. Si=, O, S-,
or Se—, and Y = O- (Z = H) using heterosubstituted allylic
carbanions.? This method provides stereochemical control at
the secondary carbon centre (Z = H) (1a, b). In spite of the
fact that the synthesis of a number of important natural
products requires stereochemical control at the tertiary carbon
centre, the methodology for such control is very inadequate
in comparison with that for the secondary carbon centre.®
We now report such stereocontrol (1¢, X =Z =C=,Y = O0-)
via the reaction of pyruvates with but-2-enyl organometallic
compounds.

First, the reaction of pyruvates (3) with but-2-enyl-9-borabi-
cyclo[3.3.1]nonane (but-2-enyl-BBN) (2a) or but-2-enyl-
tributyltin (2b) was examined, and the results are summarized
in Table 1. By increasing the steric bulk of the ester groups,
the threo-isomer* (4) can be obtained either predominantly or

Y Z

Ma; X=Cs5,Y=0-,Z=H
b; X = heteroatom, Y = O-.Z=H
;) X=Z=C5,Y=0-

Table 1. Reaction of (3) with but-2-enyl organometallic com-
pounds (2).2

But-2-enyl
organometallic Pyruvate Product ratio, %P
compound 3) R =) threo-(4) erythro-(5)
(2a) Me 73 27
Me,CCH, 85 15
PhCH, 80 20
Ph 90 10
2,6-Buf-4-Me-C,H,  ca. 100 —
(2b) Me 60 40
Me,CCH, 54 46
PhCH, 50 50
2,6-Me,-C,H,4 43 (35)c 57 (65)°

L] Corppound (2a) (1 mmol) was added to a dry diethyl ether
solution of (3) (1 mmol) at —78 °C under N,. The reaction mix-
ture was allowed to reach room temperature, and then quenched
with aminoethanol (2 mmol)-MeOH (0.5 ml). The reaction of
(3) with (2b) (1 mmol) in the presence of BFy;OEt, (2 mmol) was
carried out as described previously.® ® The ratio of threo/erythro
was determined by 'H n.m.r. analysis of the reaction mixture. The
doublet methyl protons (CH;CH) of (4) always appeared at lower
ﬁe}d (ca. 8 0.03—0.14) than those of (5). For the structure deter-
mination, see footnote 1. Total yields were in the range 89—969%,
with (2a) and 84—889%, with (2b). ¢ EtAICl, was used in place
of BF;'OEt, as the Lewis acid.

exclusively via the reaction with (2a). On the other hand, the
stereoselective synthesis of the erythro-isomer (5) is difficult,
and the best result so far obtained is ca. 609, via the reaction
with (2b). These stereochemical features can be explained by
the transition-state geometries shown in Scheme 1. In the six-
membered chair transition state from (2a), (6) gives (4) and
(7) produces (5). Increase of the steric bulk of R destabilizes
(7) relative to (6) owing to the CO,R~L interaction. On the
other hand, the but-2-enyltributyltin-BF; reaction proceeds
via an acyclic transition state.® With a small R group (8) is
only slightly stabilized relative to (9), and with a large R
group this is reversed. Thus, the reaction via (2b) results in low
selectivity.

Next, we examined the reaction of (3) with «-silyl or a-
stannyl substituted but-2-enyl-BBN (10a, b).* Interestingly,
even methyl pyruvate produced the threo-cis-isomer (11b) as
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Scheme 1. Transition-state geometry.
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Scheme 2. i, m-Chloroperbenzoic acid~-CH,Cl;, 95%; ii, BF;-OE¢,-
MeOH, 90%; iii, CrO;—H,SO,, acetone, 80%; iv, LIOH, MeOH-
H,O0.

a single product from the reaction of (10b). Unfortunately, the
reaction of (10a) was accompanied by the formation of the
a-adduct (12a); (11a/12a) = 63/37 with BunLi as base.® The
threo-cis-adduct (11a) was easily separated from (12a) by
silica gel column chromatography, and converted into cis-
crobarbatic acid methyl ester (13) via the procedure of Mag-
nus.” The usual hydrolysis produced the corresponding acid
(14) (Scheme 2). The structure of (13) [and in turn (14)] was
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determined by comparison with an authentic material pre-
pared using the literature procedure [trans-/cis-(13) = 10/1).8t
Both g.l.c. and *H n.m.r. examination revealed that the trans-
isomer was not contained in our sample (13); 'H n.m.r. §
(CCl,, Me,Si), cis-isomer, 1.15 (d, J 7 Hz, 3H), 1.51 (s, 3H),
2.0—2.4 (m, 1H), 2.5—3.0 (m, 2H), 3.77 (s, 3H); trans-iso-
mer, 1.05 (d, J 6.5 Hz, 3H), 1.60 (s, 3H), 2.2—2.8 (m, 3H),
3.82 (s, 3H). Since the synthetic procedure for the trans-iso-
mer is well known,? both isomers of crobarbatic acid are now
available. This is especially important for the synthesis of
various pyrrolizidine alkaloids and related compounds.s
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1 Protodesilylation or protodestannylation of (11) followed by
hydrolysis produced threo-(4) (R = H). The reaction products
{(4) and (5)] of Table 1 were converted into the corresponding
acids by hydrolysis and compared with an authentic rhreo-isomer.






